

A new ERA for global Dermatology 10 - 15 JUNE 2019 MILAN, ITALY

MEDICAL THERAPIES AND PHARMACOLOGY

EFFECTS OF HYDROXYAPATITE NANOPARTICLES ON PROLIFERATION AND APOPTOSIS OF HUMAN SQUAMOUS CELL CARCINOMA CELL LINE A431 IN VITRO AND IN VIVO

Jiaoqing Tang (1) - Lin Wang (1)

West China Hospital, Sichuan University, Department Of Dermatovenereology, Chengdu, China (1)

Background: Cutaneous squamous cell carcinoma (SCC) is a common cutaneous malignancy and has a potential for local recurrence and regional or distant metastases. Exploring new materials for treatment and investigating the mechanism are important. With the development of nanometer technology, hydroxyapatite (HAP) nanoparticle, a novel inorganic material, was found to be able to inhibit tumor cell proliferation.

Objective: To study the effect of hydroxyapatite nanoparticles on human SCC cell line A431 in vitro and in vivo.

Materials and Methods: The human SCC cell line A431 was cultured and treated with HAP nanoparticles at various concentrations. Growth suppression was detected with cell counting kit-8 assay and cell cycle assay. Cell apoptotic alterations were evaluated by flow cytometry (Annexin V-FITC/PI). The skin tumor model was established from balb/c nude female mice. The mice were divided into experimental group and control group, and received a subdermal injection of 1.5 million cells into the subaxillary skin with or without HAP nanoparticles.

Results: HAP nanoparticles, detected with cell counting kit-8 assay, inhibited the growth of SCC cell in a dose-dependent manner form 60 μ g/ml to 480 μ g/ml. cell cycle assay showed no significant difference between experimental and control group. Flow cytometry analysis showed the apoptotic rates at the concentrations of 60, 120, 240 and 480 μ g/ml of HAP nanoparticles were 21.43±1.25%, 37.32±5.45%, 30.34±3.04% and 27.91±1.17%, respectively, which were all higher than that of control group 9.48±1.34%. The tumor volume in mice 18 days following injection of the cancer cells was 346.43±227.17 mm3 in experimental group, which was significant higher than that of control group 85.41±90.75 mm3.

A new ERA for global Dermatology 10 - 15 JUNE 2019 MILAN, ITALY

Conclusions: HAP nanoparticles not only inhibit proliferation but also induce apoptosis of human SCC cell line A431 in vitro and in vivo.

