ABSTRACT BOOK ABSTRACTS

A new ERA for global Dermatology 10 - 15 JUNE 2019 MILAN, ITALY

DERMOSCOPY AND SKIN IMAGING

LINE-FIELD CONFOCAL OPTICAL COHERENCE TOMOGRAPHY: PRESENTATION OF THE TECHNIQUE AND ITS APPLICATIONS IN DERMATOLOGY

Mariano Suppa⁽¹⁾ - J Monnier⁽²⁾ - M Miyamoto⁽¹⁾ - G Dejonckheere⁽¹⁾ - L Tognetti⁽³⁾ - J Perez-anker⁽⁴⁾ - E Cinotti⁽³⁾ - P Rubegni⁽³⁾ - J Malvehy⁽⁴⁾ - V Del Marmol⁽¹⁾ - JI Perrot⁽²⁾

Universite Libre De Bruxelles, Hopital Erasme, Department Of Dermatology, Brussels, Belgium⁽¹⁾ - University Hospital Of Saint-etienne, Department Of Dermatology, Saintetienne, France⁽²⁾ - University Of Siena, Department Of Medical, Surgical And Neurological Science, Dermatology Section, Siena, Italy⁽³⁾ - University Of Barcelona, Melanoma Unit, Department Of Dermatology, Barcelona, Spain⁽⁴⁾

Introduction: Several optical techniques have been introduced for non-invasively imaging the skin. In particular, reflectance confocal microscopy provides high lateral resolution (~1 μ m) but low penetration depth (~250 μ m) and images in the horizontal plane (en face), unlike histopathology; optical coherence tomography (OCT) provides high penetration depth (570-1000 μ m) and images in the vertical plane (cross-sectional), but low lateral resolution (3-10 μ m).

Objectives: To present line-field confocal (LC)-OCT, a novel imaging technique able to combine the technical advantages of RCM and conventional OCT and overcome their drawbacks; and (ii) to give an overview of its numerous applications in dermatology.

Materials & Methods: LC-OCT provides high-speed high-resolution B-scan imaging of semitransparent objects including biological tissues. It is based on a two-beam interference microscope with line illumination and detection using a broadband spatially coherent light source and a line-scan camera. Spatial resolution of $1.3x1.1 \mu m$ (lateral × axial) is achieved. In vivo cellular resolution imaging of human skin is demonstrated at 10 frames per second with a penetration depth of ~500 μm . A LC-OCT prototype was provided to our departments in order to test it on several cutaneous conditions. Imaging was performed in areas highlighted with binder hole reinforcement stickers (internal diameter: 6 mm). Punch biopsies (diameter: 6 mm) were then performed within the stickers in order to investigate correlations with histopathology.

Results: LC-OCT images/videos and punch biopsies of 5 normal skin locations, 10 benign/malignant melanocytic lesions, 10 non-melanoma skin cancers, 10 seborrheic keratoses, 10 angiomas and 10 inflammatory/infectious conditions were acquired. High

International League of Dermatological Societies Skin Health for the World

correlation was observed between the LC-OCT and histopathological images for all cases by 2 different observers.

Conclusions: We presented LC-OCT, a novel technique for in vivo cellular-level imaging of the skin. LC-OCT is of particular interest in dermatology as it provides cross-sectional images with near histological resolution in real-time.

24[™] WORLD CONGRESS OF DERMATOLOGY MILAN 2019

International League of Dermatological Societies Skin Health for the World

