ACNE, ROSACEA, AND RELATED DISORDERS (INCLUDING HIDRADENITIS SUPPURATIVA)

NON-CLINICAL AND HUMAN PHARMACOLOGY OF THE POTENT AND SELECTIVE TOPICAL RARγ AGONIST TRIFAROTENE

J Aubert(1) - D Piwnicka(1) - B Bertino(1) - S Blanchet-réthoré(1) - I Carlavan(1) - S Deret(1) - B Dréno(2) - B Gamboa(1) - A Jomard(1) - Ap Luzy(1) - P Mauvais(1) - C Mounier(1) - J Pascau(1) - I Pelisson(1) - T Portal(1) - M Rivier(1) - P Rossio(1) - E Thoreau(1) - E Vial(1) - Jj Voegel(1)

Nestlé Skin Health Galderma R&d, Pharmacology, Sophia Antipolis, France(1) - University Hospital Nantes, Chu Nantes, Nantes, France(2)

Introduction: Retinoids have a dominant role in topical acne therapy and to date, only RARβ and RARγ dual agonists have reached the market.

Objectives: to confirm the hypothesis that developing RARγ–selective agonists could yield a new generation of topical acne treatments that would increase safety margins while maintaining the robust efficacy of previous drugs.

Materials and Methods: Structural knowledge derived from the X-Ray structure of known RARγ–selective molecule. Design, synthesis and in vitro evaluation of a novel triaryl series of RARγ agonists were performed including structure activity and property relationship.

Results: Results revealed an unique and isotype specific pocket in the RARγ ligand binding domain thus enabling the optimization of a novel triaryl series of RARγ selective agonist for topical administration.

Conclusions: Structural information led to the discovery of Trifarotene, a new RARγ–selective agonist as a potential new generation of topical acne treatments.